\(\int \frac {\cos ^2(e+f x)}{(a+b \sin ^2(e+f x))^{3/2}} \, dx\) [360]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 188 \[ \int \frac {\cos ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\frac {\cos (e+f x) \sin (e+f x)}{a f \sqrt {a+b \sin ^2(e+f x)}}+\frac {\sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a b f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}-\frac {\sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{b f \sqrt {a+b \sin ^2(e+f x)}} \]

[Out]

cos(f*x+e)*sin(f*x+e)/a/f/(a+b*sin(f*x+e)^2)^(1/2)+EllipticE(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+e)^2
)^(1/2)*(a+b*sin(f*x+e)^2)^(1/2)/a/b/f/(1+b*sin(f*x+e)^2/a)^(1/2)-EllipticF(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e
)*(cos(f*x+e)^2)^(1/2)*(1+b*sin(f*x+e)^2/a)^(1/2)/b/f/(a+b*sin(f*x+e)^2)^(1/2)

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 188, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3271, 423, 507, 437, 435, 432, 430} \[ \int \frac {\cos ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=-\frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b f \sqrt {a+b \sin ^2(e+f x)}}+\frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{a b f \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}+\frac {\sin (e+f x) \cos (e+f x)}{a f \sqrt {a+b \sin ^2(e+f x)}} \]

[In]

Int[Cos[e + f*x]^2/(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

(Cos[e + f*x]*Sin[e + f*x])/(a*f*Sqrt[a + b*Sin[e + f*x]^2]) + (Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e +
f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(a*b*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) - (Sqrt[Cos[e +
 f*x]^2]*EllipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(b*f*Sqrt[a + b*
Sin[e + f*x]^2])

Rule 423

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-x)*(a + b*x^n)^(p + 1)*((
c + d*x^n)^q/(a*n*(p + 1))), x] + Dist[1/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(n*
(p + 1) + 1) + d*(n*(p + q + 1) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[
p, -1] && LtQ[0, q, 1] && IntBinomialQ[a, b, c, d, n, p, q, x]

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 432

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 437

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]
, Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 507

Int[(x_)^(n_)/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[1/b, Int[Sqrt[a +
 b*x^n]/Sqrt[c + d*x^n], x], x] - Dist[a/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b, c,
 d}, x] && NeQ[b*c - a*d, 0] && (EqQ[n, 2] || EqQ[n, 4]) &&  !(EqQ[n, 2] && SimplerSqrtQ[-b/a, -d/c])

Rule 3271

Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[ff*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])), Subst[Int[(1 - ff^2*x^2)^((m - 1)/2
)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !IntegerQ
[p]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {1-x^2}}{\left (a+b x^2\right )^{3/2}} \, dx,x,\sin (e+f x)\right )}{f} \\ & = \frac {\cos (e+f x) \sin (e+f x)}{a f \sqrt {a+b \sin ^2(e+f x)}}+\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{a f} \\ & = \frac {\cos (e+f x) \sin (e+f x)}{a f \sqrt {a+b \sin ^2(e+f x)}}-\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{b f}+\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{a b f} \\ & = \frac {\cos (e+f x) \sin (e+f x)}{a f \sqrt {a+b \sin ^2(e+f x)}}+\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {b x^2}{a}}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{a b f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}-\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {b x^2}{a}}} \, dx,x,\sin (e+f x)\right )}{b f \sqrt {a+b \sin ^2(e+f x)}} \\ & = \frac {\cos (e+f x) \sin (e+f x)}{a f \sqrt {a+b \sin ^2(e+f x)}}+\frac {\sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a b f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}-\frac {\sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{b f \sqrt {a+b \sin ^2(e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.54 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.71 \[ \int \frac {\cos ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\frac {\sqrt {2} a \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )-\sqrt {2} a \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )+b \sin (2 (e+f x))}{\sqrt {2} a b f \sqrt {2 a+b-b \cos (2 (e+f x))}} \]

[In]

Integrate[Cos[e + f*x]^2/(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

(Sqrt[2]*a*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, -(b/a)] - Sqrt[2]*a*Sqrt[(2*a + b - b*Cos
[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)] + b*Sin[2*(e + f*x)])/(Sqrt[2]*a*b*f*Sqrt[2*a + b - b*Cos[2*(e +
f*x)]])

Maple [A] (verified)

Time = 2.07 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.77

method result size
default \(-\frac {a \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right )-a \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right )+\left (\sin ^{3}\left (f x +e \right )\right ) b -b \sin \left (f x +e \right )}{a b \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(145\)

[In]

int(cos(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-(a*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))-a*(cos(f*x+e)^2)^(1
/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))+sin(f*x+e)^3*b-b*sin(f*x+e))/a/b/cos(f*x
+e)/(a+b*sin(f*x+e)^2)^(1/2)/f

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.14 (sec) , antiderivative size = 777, normalized size of antiderivative = 4.13 \[ \int \frac {\cos ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=-\frac {2 \, \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} b^{2} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + 4 \, {\left (i \, b^{2} \cos \left (f x + e\right )^{2} - i \, a b - i \, b^{2}\right )} \sqrt {-b} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} \sqrt {\frac {a^{2} + a b}{b^{2}}} F(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) + 4 \, {\left (-i \, b^{2} \cos \left (f x + e\right )^{2} + i \, a b + i \, b^{2}\right )} \sqrt {-b} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} \sqrt {\frac {a^{2} + a b}{b^{2}}} F(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) - {\left (2 \, {\left (i \, b^{2} \cos \left (f x + e\right )^{2} - i \, a b - i \, b^{2}\right )} \sqrt {-b} \sqrt {\frac {a^{2} + a b}{b^{2}}} - {\left ({\left (-2 i \, a b - i \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 2 i \, a^{2} + 3 i \, a b + i \, b^{2}\right )} \sqrt {-b}\right )} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} E(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) - {\left (2 \, {\left (-i \, b^{2} \cos \left (f x + e\right )^{2} + i \, a b + i \, b^{2}\right )} \sqrt {-b} \sqrt {\frac {a^{2} + a b}{b^{2}}} - {\left ({\left (2 i \, a b + i \, b^{2}\right )} \cos \left (f x + e\right )^{2} - 2 i \, a^{2} - 3 i \, a b - i \, b^{2}\right )} \sqrt {-b}\right )} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} E(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}})}{2 \, {\left (a b^{3} f \cos \left (f x + e\right )^{2} - {\left (a^{2} b^{2} + a b^{3}\right )} f\right )}} \]

[In]

integrate(cos(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

-1/2*(2*sqrt(-b*cos(f*x + e)^2 + a + b)*b^2*cos(f*x + e)*sin(f*x + e) + 4*(I*b^2*cos(f*x + e)^2 - I*a*b - I*b^
2)*sqrt(-b)*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*sqrt((a^2 + a*b)/b^2)*elliptic_f(arcsin(sqrt((2*b*sq
rt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) + I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqr
t((a^2 + a*b)/b^2))/b^2) + 4*(-I*b^2*cos(f*x + e)^2 + I*a*b + I*b^2)*sqrt(-b)*sqrt((2*b*sqrt((a^2 + a*b)/b^2)
+ 2*a + b)/b)*sqrt((a^2 + a*b)/b^2)*elliptic_f(arcsin(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x +
 e) - I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^2))/b^2) - (2*(I*b^2*cos(f*x
 + e)^2 - I*a*b - I*b^2)*sqrt(-b)*sqrt((a^2 + a*b)/b^2) - ((-2*I*a*b - I*b^2)*cos(f*x + e)^2 + 2*I*a^2 + 3*I*a
*b + I*b^2)*sqrt(-b))*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_e(arcsin(sqrt((2*b*sqrt((a^2 + a*
b)/b^2) + 2*a + b)/b)*(cos(f*x + e) + I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b
)/b^2))/b^2) - (2*(-I*b^2*cos(f*x + e)^2 + I*a*b + I*b^2)*sqrt(-b)*sqrt((a^2 + a*b)/b^2) - ((2*I*a*b + I*b^2)*
cos(f*x + e)^2 - 2*I*a^2 - 3*I*a*b - I*b^2)*sqrt(-b))*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_e
(arcsin(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) - I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 -
 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^2))/b^2))/(a*b^3*f*cos(f*x + e)^2 - (a^2*b^2 + a*b^3)*f)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(f*x+e)**2/(a+b*sin(f*x+e)**2)**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\cos \left (f x + e\right )^{2}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(f*x + e)^2/(b*sin(f*x + e)^2 + a)^(3/2), x)

Giac [F]

\[ \int \frac {\cos ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\cos \left (f x + e\right )^{2}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate(cos(f*x + e)^2/(b*sin(f*x + e)^2 + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^2}{{\left (b\,{\sin \left (e+f\,x\right )}^2+a\right )}^{3/2}} \,d x \]

[In]

int(cos(e + f*x)^2/(a + b*sin(e + f*x)^2)^(3/2),x)

[Out]

int(cos(e + f*x)^2/(a + b*sin(e + f*x)^2)^(3/2), x)